- shortened menu of courses:
- Introduction to Condensed Matter; Einstein Model of Vibrations in Solids
- Debye Model of Vibrations in Solids; Drude Theory of Electrons in Metals
- Drude Theory of Electrons in Metals Sommerfeld Free Electron Theory of Electrons in Metals
- Sommerfeld Free Electron Theory of Electrons in Metals
- Chemistry in a Nutshell
- Microscopic View of Vibrations in Solids in One Dimension I The Monatomic Harmonic Chain
- Microscopic View of Vibrations in Solids in One Dimension II The Diatomic Alternating Harmonic Chain
- Microscopic View of Electrons in Solids in One Dimension Tight Binding Chain
- Geometry of Solids I Crystal Structure in Real Space
- Geometry of Solids II Real Space And Reciprocal Space 2
- Reciprocal Space and Scattering
- Scattering Experiments II
- Scattering Experiments III
- Waves in Reciprocal Space
- Nearly Free Electron Model
- Band Structure and Optical Properties of Solids
- Dynamics of Electrons in Bands
- Semiconductor Devices and Introduction to Magnetism
- Magnetic Properties of Atoms
- Collective Magnetism
- Mean Field Theory and Closing Thoughts
bilibili resources
B站视频
BV1QW411u736
youtube的实时字幕比较方便
https://www.youtube.com/watch?v=XQk25fSJkL8&list=PLaNkJORnlhZnC6E3z1-i7WERkferhQDzq
教授主页(这里可以看到其它课程)
http://www-thphys.physics.ox.ac.uk/people/SteveSimon/
2014course page
http://www-thphys.physics.ox.ac.uk/people/SteveSimon/condmat2014/condmat.html
2012版lecture note
http://www-thphys.physics.ox.ac.uk/people/SteveSimon/condmat2012/LectureNotes2012.pdf
小程序
http://www-thphys.physics.ox.ac.uk/people/SteveSimon/condmat2014/GlazerPrograms.html
up主传的网盘,包含软件
https://pan.baidu.com/s/16NbXSq771Y1zms0Vmaql4Q 密码:2ebb
01 Introduction to Condensed Matter; Einstein Model of Vibrations in Solids
resources
- book
- 《The Oxford Solid State Basics》,可于PDFDRIVE获取
- PDFDRIVE还可找到**The Oxford Solid State Basics, Solution Manual**
- webpage
- find the draft 85% similar to the 25 pounds book!
- sample exams, sample solution…
- slides & videos
- message board
- 似乎停用了。希望国内学校也用这种message board,发展起来简直不要太方便
condensed matter physics
- what is condensed matter physics
- 1/3 of physics
- why study it?
- it is the world
- it is useful
- it is deep
- deep ideas come out of condensed matter physics and go into other fields. ;D
- anti reductionism
- it is a laboratory for quantum and step back
- extension of quantum mechanics and statistical mechanics
SOLID STATE
basic to more complicated fluid or super fluid, other condensed matter.
heat capacity (of solids)
- C=dQ/dT Q: heat T: capacity
- In solid, 可以认为 $C_P=C_V=C$
- $C_P-C_V=\frac{VT \alpha^2}{\beta}$
- $\alpha$: thermal extension coefficient,热膨胀系数
- $\beta$: isothermal compressibility,等温压缩系数
- solid: $\alpha$ 很小,$C_P-C_V$可忽略
- $C_P-C_V=\frac{VT \alpha^2}{\beta}$
monatomic moneth
gas
- $C_{V/N}=\frac{3}{2}k_B$
solids
- $C_{N}=3k_B$
- Law of Dulong-Petit, 1819
- we know it’s right. But why?
Boltzmann
- statistical mechanics to reason this question
- Model of solid,1896
- 原子位于谐振势阱(bottom of the harmonic)的底端,可来回振荡。biu
biu - 温度越高,越能振荡(自由度越高),可储存的能量越高。
- 原子位于谐振势阱(bottom of the harmonic)的底端,可来回振荡。biu
- equipartition thm均分定理
- each degree of freedom, you get 1/2 $k_B$ of heat capacity.
- monatomic gas:
- $p_x, p_y, p_z$ —— $C_{V/N}=\frac{3}{2}k_B$ (3个自由度)
- solid:
- $p_x, p_y, p_z,x, y, z$ —— $C_{N}=3k_B$ (6个自由度,三方向动能+自身坐标)
- Law of D-P
- Not always true
- $T<<T_{room}$ $C_{N}<<3k_B$
- DIAMOND:
- $C_{N}<<3k_B$ at $T_{room}$
- why ?
Einstein model of solid, 1909
= Boltzmann’s solid+quantum
$\omega=\sqrt{\frac{k}{m}}$
- k: spring constant弹簧常数
一维谐振子:
$E_n=h\omega(n+1/2)$
求单个原子的热容
配分函数$Z=\sum_{n≥0}e^{-\beta E_n}$
- $\beta=\frac{1}{k_BT}$
对Z求导,能量期望值:
- $= - \frac{1}{Z}\frac{\partial Z}{\partial \beta}=h\omega(n_B(\beta h\omega)+1/2)$
- 玻色因子$n_B=\frac{1}{e^{\beta h \omega}-1}$
计算热容
$$ C=\frac{\partial }{\partial T}= k_B(\beta h \omega)^2 \frac{e^{\beta h \omega}}{(e^{\beta h \omega}-1)^2} $$注:此热容为一维谐振单原子之热容。
在三维振荡,结果乘3:
$$ C_{/N}=3k_B(\beta h \omega)^2 \frac{e^{\beta h \omega}}{(e^{\beta h\omega}-1)^2} $$
高温极限:
$$ k_BT>>h\omega \space\space-> \beta h\omega<<1\e^{\beta h\omega}\approx 1+\beta h\omega+… $$
$$ C_{/N}=3k_B $$
- 高温下量子系统趋近于经典系统,量子统计退化到玻尔兹曼经典统计。
低温极限:
$$ k_BT<<h\omega \space\space ->e^{\beta h\omega}\space is\space big! $$
$$ C_{/N}=3k_B(\beta h\omega)^2e^{-\beta h\omega} $$
- 低温时,C随T急速下降
diamond ?
- $\omega=\sqrt{\frac{k}{m}}$ : Einstein frenquency
- 大部份材料的$h\omega$比较小
- diamond: carbon, thus m small; tough, thus k big, so it’s $\omega$ is really big
- shortage: data is wrong?
- 实测数据下降得没有那么快
- 低温,most materials(including diamond), $C \approx T^3$
- exception: metal(copper) $C=\alpha T^3+ \gamma T$
- but no C as low as E’s prediction
- Debye model
- collective solid vibration motion
- sound wave
- $\omega=\sqrt{\frac{k}{m}}$ : Einstein frenquency
02 Debye Model of Vibrations in Solids; Drude Theory of Electrons in Metals
review
- Boltzmann
- $C_{/N}=3k_B$
- Einstein
- quantum
- C drops at low T (expected)
- experiment
- $C\approx T^3$
- Debye, 1912
- 爱因斯坦模型假设固体中各个原子的振动相互独立,所有的原子都具有同一频率。
- Debye的想法是,不能单独地考虑每个原子的势阱。因为一个原子振动会被弹回,但也撞击了附近原子,引起连锁振动,也就是波。
- vibration=wave(sound)
- 波在固体中的传播通常为声学波。
- quantize sound wave like light
- 波可以被量子化。
Einstein’s model:
$$
= h\omega(n_B(\beta h\omega)+1/2) $$ Debye: $$ _{total} = \sum_{modes}h\omega_{modes}(n_B(\beta h\omega)_{modes}+1/2) $$ 爱因斯坦模型:温度低于谐振子的频率时,热容会降低。 迪拜:盒子中分布着各个频率的谐振子,因此温度降低的时候,总有一些频率较低的谐振子能够得到激发,导致热容不会迅速呈指数形式下降。
LIGHT vs SOUND - LIGHT - 2 polarizations,2种偏振 - Longitudinal wave纵波,传播方向=振动方向 - transverse wave横波,传播方向⊥振动方向 - sound - 3 pols ASSUME: - $v_{sound}$ INDEP of POL - actually 横波比纵波慢 - v_{sound} INDEP of direction - actually
如何统计盒子内的波模数(counting waves modes in box): - 1D box - length l - …